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Truncated CI 
 

Ψel x1, x2, x3,..xN( ) = Cijkl... ψ i (x1)ψ j (x2 )ψ k x3( )...ψ ? xN( )
{ijkl...}

?

∑  

 
 
 
 
 
How do we choose these configurations?  
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Hierarchy: CIS (T1), CID (T2), CISD(T1+T2), CISDT(T1+T2+T3),… 
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Coupled Cluster 
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Problem: 
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Want: 

Ĥ eT̂ ΦHF = E eT̂ ΦHF  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Amplitude Equations 
Now, how do we actually solve for the amplitudes?  

 
 

Φij
ab Ĥ − E ΦHF = 0
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!! has the same eigenvalues as H, but ΦHF is the exact ground 
state of the full !! (and nearly the ground state for truncated T). 
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Hierarchy of CC approximations: 
CCD   CCSD    CCSDT 

 
 
 
 
 
 

Typical Accuracy For Various Properties 
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noninteracting CCSD wave functions is another CCSD wave function.  We 
conclude that a truncated CC prescription is capable of describing 
noninteracting fragments correctly.  As a result, the CCSD energy is 
properly size consistent and size extensive and consequently preferable to 
CISD for looking at large systems. 
 
There are truncated CC cousins for every CI approximation (e.g. CCS, CCSD, 
CCSDT, CCSDTQ…).  There is one approximation that has gained widespread 
appeal – CCSD(T).  As the name suggests, this includes all single and double 
substitutions and an approximate (perturbative) treatment of triple 
substitutions.  Because of the exponentiation, the algebra involved in the CC 
equations is quite complex – note that we haven’t even touched on how one 
would solve for the Ci

a and Cij
ab coefficients.  However, from a conceptual 

point of view, these details are less important.  Grossly, we understand 
CCSD as involving the same chemistry as CISD, but with a more elegant 
treatment of the excitations that deals properly with independent 
fragments.  The additional terms in CCSD do not increase the computational 
cost significantly relative to CISD; as a result CCSD calculations now far 
outnumber CISD calculations. 
 
CC theory can give very accurate descriptions of chemical properties.  Filling 
in our table: 

Property HF DFT MP2 CCSD(T) 
IPs and 

EAs ±0.5 eV ±0.2 eV ±0.2 eV ±0.05 eV 

Bond 
Lengths 

-1% ±1 pm ±1 pm ±0.5 pm 

Vibrational 
Frequencies +10% +3% +3% ±5 cm-1 

Barrier 
Heights 

+30-50% -25% +10% ±2 kcal/mol 

Bond 
Energies 

-50% ±3 kcal/mol 
±10 

kcal/mol 
±1 kcal/mol 

Thus we see that CCSD(T) is a phenomenal improvement over DFT.  The 
accuracy of CCSD(T) is such that the statistical errors are getting down to 
where small terms we have neglected (like relativity and the finite mass of 
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Suggested Further Reading: Crawford and Schaefer, “An Introduction 
to Coupled Cluster Theory for Computational Chemists” Rev. Comp. 
Chem. 14, pp.33-136 (2000). 
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Computational Time 
Most Time Consuming (Rate Limiting) Steps in Each Method:  
 HF    MP2     CCSD

Pλσ µλ νσ
λσ
∑ ij ab = cµi µ j ab

µ
∑ tij

ab ab cd
ab
∑  

 
Scaling: How computational time grows with system size (N) 
 
To get scaling, count the # of indices in rate limiting step: 
 

HF:  Pλσ µλ νσ
λσ
∑ →O(N 4 )  

MP2: ij ab = cµi µ j ab
µ
∑ →O(N 5 )  

 CCSD: tij
ab ab cd →O(N 6 )

ab
∑  

 

 
An ongoing area of research is using locality to reduce the cost of 
these calculations. Basically, one can neglect terms in the sums 
when the basis functions are very far apart, reducing the cost. This 
has been very effective for HF, so that the effective scaling of HF is 
now more like O(N2). It has also been effective for MP2 – the scaling 
is typically more like O(N4). Locality has yet to really improve the 
scaling of CCSD, but it will eventually happen. 
 

 
 
 

 

Implication 1: Going from one water molecule to water dimer, the HF 
time will go up by ~24=16, the MP2 time will go up by ~25=32 and the 
CCSD time will go up by ~26=64. 
 

Implication 2: For a molecule with N~100, an MP2 calculation will 
take ~100x as long as a HF calculation and a CCSD calculation will 
take ~10,000x as long as HF. 
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Basis Sets 
In chemistry, we typically use atomic orbital (AO) basis sets (e.g. 6-
31g*, cc-pVTZ, LANL2DZ…). In this situation, the basis functions on 
different atoms are not orthogonal to each other. 
 
 
 
 
 

→ Sµν ≡ χµ χν = χµ
* r( )χν r( )dr∫ ≠ δµν  

This changes the equations in a few places: 

Note:  Atomic charge definition is ambiguous, so there are many 
choices. Here, we show the Mulliken definition. 
 

A" B"

μ" ν"

Non-Orthogonality Cheat Sheet 
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