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Density Functional Theory 
Parr&Yang 3,7&8 
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Theorem (Hohenberg-Kohn):  If the ground state is not 
degenerate, the ground state density, ρ(r), determines the 
potential, v(r), up to an additive constant and vice versa. 

Proof: v(r)→ρ(r). v determines H. H determines Ψ0, since the ground 
state is not degenerate. Ψ0 determines ρ∴ 
 
ρ(r)→v(r).  Assume the contrary and look for a contradiction. Then there 
are two potentials, v1 and v2, that differ by more than an additive 
constant but give the same ground state density. Call the associated 
wave functions Ψ1 and Ψ2. Then, consider !Ψ!|!!!|Ψ!⟩. By the variational 
theorem, this must be ≥ E0[2] (the ground state energy of H2). But: 

 

Here, the strict inequality holds because the potentials differ by more 
than a constant (so that the wave functions are not the same) and we 
know that the ground state is unique. Similarly: 

 

Combining the two inequalities, we must then have 
 

and 
 

These inequalities cannot both be true and so we have reached a 
contradiction∴ 
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The Kohn-Sham Idea: 
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What is Exc? 
 Idea: Uniform Electron Gas 
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Generalized Gradient Approximation 

Exc
GGA ρ[ ] = F ρ,∇ρ( )dr∫  

 
 
 
 
 
 
How do we get F(ρ, ∇ρ)? 
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noninteracting CCSD wave functions is another CCSD wave function.  We 
conclude that a truncated CC prescription is capable of describing 
noninteracting fragments correctly.  As a result, the CCSD energy is 
properly size consistent and size extensive and consequently preferable to 
CISD for looking at large systems. 
 
There are truncated CC cousins for every CI approximation (e.g. CCS, CCSD, 
CCSDT, CCSDTQ…).  There is one approximation that has gained widespread 
appeal – CCSD(T).  As the name suggests, this includes all single and double 
substitutions and an approximate (perturbative) treatment of triple 
substitutions.  Because of the exponentiation, the algebra involved in the CC 
equations is quite complex – note that we haven’t even touched on how one 
would solve for the Ci

a and Cij
ab coefficients.  However, from a conceptual 

point of view, these details are less important.  Grossly, we understand 
CCSD as involving the same chemistry as CISD, but with a more elegant 
treatment of the excitations that deals properly with independent 
fragments.  The additional terms in CCSD do not increase the computational 
cost significantly relative to CISD; as a result CCSD calculations now far 
outnumber CISD calculations. 
 
CC theory can give very accurate descriptions of chemical properties.  Filling 
in our table: 

Property HF DFT MP2 CCSD(T) 
IPs and 

EAs ±0.5 eV ±0.2 eV ±0.2 eV ±0.05 eV 

Bond 
Lengths 

-1% ±1 pm ±1 pm ±0.5 pm 

Vibrational 
Frequencies +10% +3% +3% ±5 cm-1 

Barrier 
Heights 

+30-50% -25% +10% ±2 kcal/mol 

Bond 
Energies 

-50% ±3 kcal/mol 
±10 

kcal/mol 
±1 kcal/mol 

Thus we see that CCSD(T) is a phenomenal improvement over DFT.  The 
accuracy of CCSD(T) is such that the statistical errors are getting down to 
where small terms we have neglected (like relativity and the finite mass of 
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Property HF GGA MP2 CCSD(T) 
IPs and EAs ±0.5 eV  ±0.2 eV ±0.05 eV 

Bond 
Lengths -1%  ±1 pm ±0.5 pm 

Vibrational 
Frequencies +10%  +3% ±5 cm-1 

Barrier 
Heights +30-50%  +10% ±2 kcal/mol 

Bond 
Energies -50%  ±10 kcal/mol ±1 kcal/mol 

 
Obvious next step: Meta (or hyper-) GGAs 

Exc
GGA ρ[ ] = F ρ,∇ρ,∇2ρ,τ ,..( )dr∫ τ r( ) ≡ ∇φi r( ) 2

i=1

N

∑  

 
 
 
 

 


