Density Functional Theory Parr&Yang 3.7&8

$$\hat{H}_{el} \equiv -\frac{1}{2} \sum_{i=1}^{M} \nabla_i^2 + \sum_{i< j}^{M} \frac{1}{\left|\hat{\mathbf{r}}_i - \hat{\mathbf{r}}_j\right|} + v(\mathbf{r})$$

Theorem (Hohenberg-Kohn): If the ground state is not degenerate, the ground state density, $\rho(\mathbf{r})$, determines the potential, $v(\mathbf{r})$, up to an additive constant and vice versa.

<u>Proof</u>: $v(\mathbf{r}) \rightarrow \rho(\mathbf{r})$. v determines H. H determines Ψ_0 , since the ground state is not degenerate. Ψ_0 determines ρ :

 $\rho(\mathbf{r}) \rightarrow v(\mathbf{r})$. Assume the contrary and look for a contradiction. Then there are two potentials, v₁ and v₂, that differ by more than an additive constant but give the same ground state density. Call the associated wave functions Ψ_1 and Ψ_2 . Then, consider $\langle \Psi_1 | \hat{H}_2 | \Psi_1 \rangle$. By the variational theorem, this must be $\geq E_0^{[2]}$ (the ground state energy of H_2). But:

$$\langle \Psi_{1} | \hat{H}_{2} | \Psi_{1} \rangle = \langle \Psi_{1} | -\frac{1}{2} \sum_{i=1}^{M} \nabla_{i}^{2} + \sum_{i < j}^{M} \frac{1}{|\hat{\mathbf{r}}_{i} - \hat{\mathbf{r}}_{j}|} + v_{2}(\mathbf{r}) | \Psi_{1} \rangle$$

$$= \langle \Psi_{1} | -\frac{1}{2} \sum_{i=1}^{M} \nabla_{i}^{2} + \sum_{i < j}^{M} \frac{1}{|\hat{\mathbf{r}}_{i} - \hat{\mathbf{r}}_{j}|} + v_{1}(\mathbf{r}) + (v_{2}(\mathbf{r}) - v_{1}(\mathbf{r})) | \Psi_{1} \rangle$$

$$= E_{0}^{(1)} + \langle \Psi_{1} | (v_{2}(\mathbf{r}) - v_{1}(\mathbf{r})) | \Psi_{1} \rangle$$

$$= E_{0}^{[1]} + \int \rho(\mathbf{r}) (v_{2}(\mathbf{r}) - v_{1}(\mathbf{r})) d^{3}\mathbf{r} > E_{0}^{[2]}$$

Here, the strict inequality holds because the potentials differ by more than a constant (so that the wave functions are not the same) and we know that the ground state is unique. Similarly:

$$\langle \Psi_2 | \hat{H}_1 | \Psi_2 \rangle = \dots = E_0^{[2]} + \int \rho(\mathbf{r}) (v_1(\mathbf{r}) - v_2(\mathbf{r})) d^3 \mathbf{r} > E_0^{[1]}$$

Combining the two inequalities, we must then have

$$\int \rho(\mathbf{r}) (v_2(\mathbf{r}) - v_1(\mathbf{r})) d^3 \mathbf{r} > E_0^{[2]} - E_0^{[1]}$$
and
$$E_0^{[2]} - E_0^{[1]} > \int \rho(\mathbf{r}) (v_2(\mathbf{r}) - v_1(\mathbf{r})) d^3 \mathbf{r}$$

These inequalities cannot both be true and so we have reached a contradiction:

o - e verything!

The Kohn-Sham Idea:

$$\rho(x) \equiv \sum_{i=1}^{N} |\phi_i(x)|^2 \iff \text{Single determinant}$$

$$E[\rho(x)] = \sum_{i=1}^{N} \langle \phi_{i} | -\frac{1}{2} \nabla^{2} + v(\mathbf{r}) | \phi_{i} \rangle + \int \frac{\rho(\mathbf{r}_{1}) \rho(\mathbf{r}_{2})}{r_{12}} d\mathbf{r}_{1} d\mathbf{r}_{2} + \begin{bmatrix} \sum_{i=1}^{N} \langle \phi_{i} | -\frac{1}{2} \nabla^{2} + v(\mathbf{r}) | \phi_{i} \rangle + \int \frac{\rho(\mathbf{r}_{1}) \rho(\mathbf{r}_{2})}{r_{12}} d\mathbf{r}_{1} d\mathbf{r}_{2} + \begin{bmatrix} \sum_{i=1}^{N} \langle \phi_{i} | -\frac{1}{2} \nabla^{2} + v(\mathbf{r}) | \phi_{i} \rangle + \int \frac{\rho(\mathbf{r}_{1}) \rho(\mathbf{r}_{2})}{r_{12}} d\mathbf{r}_{1} d\mathbf{r}_{2} + \begin{bmatrix} \sum_{i=1}^{N} \langle \phi_{i} | -\frac{1}{2} \nabla^{2} + v(\mathbf{r}) | \phi_{i} \rangle + \int \frac{\rho(\mathbf{r}_{1}) \rho(\mathbf{r}_{2})}{r_{12}} d\mathbf{r}_{1} d\mathbf{r}_{2} + \begin{bmatrix} \sum_{i=1}^{N} \langle \phi_{i} | -\frac{1}{2} \nabla^{2} + v(\mathbf{r}) | \phi_{i} \rangle + \int \frac{\rho(\mathbf{r}_{1}) \rho(\mathbf{r}_{2})}{r_{12}} d\mathbf{r}_{1} d\mathbf{r}_{2} + \begin{bmatrix} \sum_{i=1}^{N} \langle \phi_{i} | -\frac{1}{2} \nabla^{2} + v(\mathbf{r}) | \phi_{i} \rangle + \int \frac{\rho(\mathbf{r}_{1}) \rho(\mathbf{r}_{2})}{r_{12}} d\mathbf{r}_{1} d\mathbf{r}_{2} + \begin{bmatrix} \sum_{i=1}^{N} \langle \phi_{i} | -\frac{1}{2} \nabla^{2} + v(\mathbf{r}) | \phi_{i} \rangle + \int \frac{\rho(\mathbf{r}_{1}) \rho(\mathbf{r}_{2})}{r_{12}} d\mathbf{r}_{1} d\mathbf{r}_{2} + \sum_{i=1}^{N} \langle \phi_{i} | -\frac{1}{2} \nabla^{2} + v(\mathbf{r}) | \phi_{i} \rangle + \int \frac{\rho(\mathbf{r}_{1}) \rho(\mathbf{r}_{2})}{r_{12}} d\mathbf{r}_{1} d\mathbf{r}_{2} + \sum_{i=1}^{N} \langle \phi_{i} | -\frac{1}{2} \nabla^{2} + v(\mathbf{r}) | \phi_{i} \rangle + \int \frac{\rho(\mathbf{r}_{1}) \rho(\mathbf{r}_{2})}{r_{12}} d\mathbf{r}_{2} d\mathbf$$

$$LCP_{j}XJ = ECP_{j} + Tr(XPP - XP)$$

$$SL = 0 \dots$$

+ SX (1) & Exc 2 (1) d'r
<241 Vx (122)

Looks Like HF!

What is E_{xc} ?

Idea: Uniform Electron Gas

Local Density Approxima

Except = \(\int_{xc}^{ue}(\rho(r)) \, d^3r \)

Periodic, uniform P(1) $E_{xc}[p(1)] \rightarrow E_{xc}^{UEC}(p)$ QMC for UE 6 $E_{xc}^{UEC}[p] = \int e_{xc}^{UEC}(p) d^3r$

Property	HF	LDA
IPs and	±0.5 eV	± 0.5 eV
EAs	20.0 01	_
Bond	-1%	+ 2%
Lengths Vibrational		
Frequencies	+10%	-20%
Barrier		2.0
Heights	+30-50%	-75%
Bond	-50%	100B
Energies		+ 100%

Generalized Gradient Approximation

$$E_{xc}^{GGA}[\rho] = \int F(\rho, \nabla \rho) d\mathbf{r}$$

Better Physics For varying p's
BLYP, PBE

How do we get $F(\rho, \nabla \rho)$?

- 1) Nearly Uniform Gas -> p(r) = P + Sp(r)
 L) Recover UEG when Tp ->0
 - 2) Atomic data pcr)~e-ar
 - 3) Physical Constraints
 47 Dimensional Scaling
 Ly Sumrules (xc hole)
 - 4) Empiricism

Property	HF	GGA	MP2	CCSD(T)
IPs and EAs	±0.5 eV	±0.200	±0.2 eV	±0.05 eV
Bond Lengths	-1%	+1%	±1 pm	±0.5 pm
Vibrational Frequencies	+10%	-5%	+3%	±5 cm ⁻¹
Barrier Heights	+30-50%	-50%	+10%	±2 kcal/mol
Bond Energies	-50%	+ 10 Kml	±10 kcal/mol	±1 kcal/mol

Obvious next step: Meta (or hyper-) GGAs

$$E_{xc}^{GGA}[\rho] = \int F(\rho, \nabla \rho, \nabla^2 \rho, \tau, ...) d\mathbf{r} \qquad \tau(\mathbf{r}) \equiv \sum_{i=1}^{N} \left| \nabla \phi_i(\mathbf{r}) \right|^2$$
 Doesn't improve much. TPSS, MO6, VSXC

Hybrids

$$E_{xc}E_{pl} = \langle h \rangle + \int \frac{\rho(r)}{r_{12}} dr_{12} dr_{13} + \sum_{x} \frac{c_{x}}{r_{x}} + E_{x}^{c_{x}} + E_{x}^{c_{x}} + E_{x}^{c_{x}}$$

$$B3LYP$$

$$Why?$$