Hybrid DFT

$$E_{xc}[\rho] = C_x E_x^{GGA}[\rho] + E_c^{GGA}[\rho] + (1 - C_x) E_K^{HF}$$

Property	HF	Hybrid	MP2	CCSD(T)
IPs and EAs	±0.5 eV	±0.2 eV	±0.2 eV	±0.05 eV
Bond Lengths	-1%	±1 pm	±1 pm	±0.5 pm
Vibrational Frequencies	+10%	+3%	+3%	±5 cm ⁻¹
Barrier Heights	+30-50%	-25%	+10%	±2 kcal/mol
Bond Energies	-50%	±3 kcal/mol	±10 kcal/mol	±1 kcal/mol

20%K = B3LYP PBEØ -> 25%K

Why does this work so well?

Dissociation
of Hg+

H

Self-Interaction Error

HF Interaction Energy for H₂⁺

$$\sum_{ij}^{N} \langle ij|ij \rangle - \langle ij|ji \rangle = \langle n|ij \rangle - \langle n|in \rangle = 0$$

GGA Interaction Energy for H₂⁺

Manifestations of SIE in Chemistry

Polaron Formation delocalization knoth too big! Transition States p deocalited 7 ETS U Barriors too Low Intermolecular Charge Transfer 8 collect

So then we should include 100% HF exchange, right?

100% K + GGAc → HF-like

Example 1: Antiferromagnetism

<u>Theoretical Justification:</u> Adiabatic Connection In DFT, E_{xc} contains more than just e-e interaction terms

$$E[\rho] = \int \sum_{i}^{N} |\nabla \phi_{i}(\mathbf{r})|^{2} d\mathbf{r} + \dots$$

$$\text{Non-interacting KE}$$

$$E_{XC}[\rho] = V_{ee}[\rho] + (T_{exect} - T_{NI})$$

How do we get these extra kinetic energy terms? Idea: Adiabatic Connection

$$\hat{H}_{\lambda} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + v_{\lambda}(\mathbf{r}) + \sum_{i < j} \frac{\lambda}{r_{ij}} \qquad \lambda = 0 \qquad \text{Non-intracting}$$

$$V_{\lambda} \quad \text{forces } \; \ell_{\lambda} = \rho_{\text{exact}} \; \mathcal{B} \quad \text{all } \lambda$$

Adiabatic Connection Theorem:

$$E_{xc}[\rho] = \int_{0}^{1} V_{ee}^{\lambda}[\rho] d\lambda \cong \left(V_{ee}^{\lambda=0} + V_{ee}^{\lambda=1}\right) \mathbf{I}$$

$$E_{K}^{\lambda=0} = \int_{0}^{1} V_{ee}^{\lambda}[\rho] d\lambda \cong \left(V_{ee}^{\lambda=0} + V_{ee}^{\lambda=1}\right) \mathbf{I}$$

accounts for K.E. terms.

Range Separated Hybrids

$$\frac{1}{r} = \frac{erf(\omega r)}{r} + \frac{1 - erf(\omega r)}{r}$$

$$LR \qquad 5 R$$

Original Idea: Treat LR with HF, short range with DFT

$$E_{KC} = E_{K}^{LR-HF} + E_{K}^{SR-FGA} \qquad Param (w)$$

$$LC-uPBE_{J} CAM-B3LYP_{J} \quad BNL_{J}...$$

HSE -> LR-GGA, SR-HF.

w is extensive!?

Korzdorfer, Sears, Sutton, Bredas JCP 135 204107 (2011).

Dispersion Interactions

Weak, Long Range Correlation Effect:

Three (Good) Ideas:

Double Hybrid DFT

$$E_{xc}[\rho] = C_x E_x^{GGA}[\rho] + C_c E_c^{GGA}[\rho] + (1 - C_x) E_K^{HF} + (1 - C_c) E_c^{MP2}$$

✓Exploits good properties of Ψ theory

✗Cost of MP2

Atomic Partitioning of Density

$$\rho \to \rho_A + \rho_B + \rho_C + \dots$$

$$C_6^{IJ} = F[\rho_I, \rho_J]$$

✓ Cheap, Density Based

XWhat about C₈? Or Three Body Dispersion?

Nonlocal Functionals

$$E_{c}[\rho] = \int \rho(\mathbf{r}_{1})\phi(\mathbf{r}_{1},\mathbf{r}_{2},\rho)\rho(\mathbf{r}_{2})d\mathbf{r}_{1}d\mathbf{r}_{2}$$

✓ Builds new physics into correlation functional

XDifficult to derive new functionals

Suggested Further Reading:

Cohen, Mori-Sanchez, Yang, "Challenges for DFT", *Chem Rev* **112**, pp289-320 (2012).

Burke, "Perspective on DFT" *J Chem Phys* **136**, 150901 (2012). Klimes and Michaelides, "Advances and challenges in treating vdW dispersion forces in DFT," *J Chem Phys* **137** 120901 (2012).