
Linear Algebra 
 
One of the biggest problems people run into in quantum chemistry is that 
quite often they have little or no background in linear algebra.  Quantum 
mechanics is all linear algebra, so this is a fairly serious weakness.  This 
review is intended to help get people who don’t have a strong background 
get up to speed in linear algebra.  
 
So, first things first: a Matrix is an n by m array of numbers that we will 
usually display as: 
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We will typically denote matrices by capital boldface letters.  We refer to the 
matrix as having n columns and m rows.  The Transpose of a matrix is 
obtained by reflecting the elements about the diagional: 
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Notice that the transpose is an m by n array of numbers.  If one has a p by q 
matrix,  A , and a q by r matrix, B , then one can multiply them: 

CAB =  
which results in a p by r matrix, C , with elements 
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This can be interpreted in the standard pictorial form of taking a row of A  
times a column from B .  This only works if the number of columns of A  is 
equal to the number of rows of B .  In practice, we will primarily be 
interested in square matrices, in which case p=q=r and thus the dimensions 



of the matrices will always match up.  The important point is that matrix 
multiplication does not commute.  This is easily proven using 2 by 2 
matrices: 

⎟⎟⎠

⎞
⎜⎜⎝

⎛=⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
−

=

⎟⎟⎠

⎞
⎜⎜⎝

⎛=⎟⎟⎠

⎞
⎜⎜⎝

⎛
−⎟⎟⎠

⎞
⎜⎜⎝

⎛=

30
45

12
21

12
21

34
05

12
21

12
21

BA

AB
 

Another important point is that the transpose of a product of matrices is 
given by the product of the transposes in the reverse order: 

( ) TTT ABAB = . 
 

There are two special kinds of matrices:  n by 1 matrices (which we call 
column vectors) and 1 by m matrices (which we call row vectors). 
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 We will use lowercase bold letters (x , y  etc.) to denote vectors.  Column 
and row vectors are related through transposition; the transpose of a row 
vector is a column and vice-versa: 
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As shown above, we will usually give only one index to the elements of a 
vector, since the other (either the row index for a column vector or the 
column index for a row vector) is always ‘1’.  The product of a row vectors 
and a column vector is a 1 by 1 matrix – a number.  This number is special; 
it is the dot product (or inner product) between the vectors, which we will 
write 
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The dot product tells us to what extent the two vectors point “in the same 
direction”.  Using the dot product, we can define the norm of a column 
vector: 
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In addition to the inner product of two vectors, which is always “row times 
column” we will also be interested in the outer (or tensor) product which 
involves the opposite ordering: 
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Note that instead of giving a number, this gives us a matrix. Many times, we 
will omit the “⊗”; in this case it is understood that for “column times row” 
we mean outer product. 
 
We now define several terms that will be useful later: 
 
A vector is normalized if 12 =x .  Given any un-normalized vector, one can 
normalize it by dividing by a constant, x=c . 
 
Two vectors are orthogonal if 0=⋅yx .  If the vectors are both orthogonal 
and normalized, they are said to be orthonormal. 
 
A matrix is symmetric if AA =T .  It is anti-symmetric (or skew-symmetric) 
if  AA −=T . 
 
A matrix is orthogonal if 1AA =T , where 1 is the unit matrix (ones on the 
diagonal, zeros on the off-diagonal.  For a square orthogonal matrix, A , the 
transpose,  TA , is also orthogonal.   
 
 
If we treat each column of the matrix as a vector, saying the matrix is 
orthogonal is equivalent to saying that the columns are all orthonormal.  To 
see this, begin with the fully indexed form of 1AA =T : 
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where we have introduced the Kronecker delta, ijδ , which is defined to be 
one if i=j and zero otherwise.  It is just a handy way of writing the unit 
matrix.  Taking the transpose of A  just swaps the order of the indices (cf. 
the definition of the transpose above) so: 
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We now group the columns of A  into vectors ia : 
( )...321 aaaA =  

the vectors are given by: 
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We can then re-write 1AA =T  in terms of the dot products of these vectors: 
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This last equation is just another way of saying the vectors are orthonormal: 
the dot product between any two different vectors (i≠j) is zero while the 
norm of each vector (i=j) is 1.  
 
We will be interested in some fairly abstract vector spaces, and I have 
already hinted that these spaces will generally be infinite dimensional.  How 
do we even define dimension in such a case?  First we note that in any 
vector space, one can always come up with a (possibly infinite) set of 
vectors,  

{ },...,, 321 vvv=S  
such that every other vector can be written as a linear combination of the 
vectors in S: 

...332211 +++= vvvx cccany  

S is then said to “span the space” we are studying.  Now, there might be 
‘extra’ vectors in S.  For example, we might be able to write 1v  as a linear 
combination of ...,, 432 vvv : 

...4433221 vvvv bbb ++=  



In this case we could remove 1v  from S and it would still “span the space”.  
If we remove all these redundant vectors from S  (so that no vector in S can 
be written as a linear combination of the others) then S becomes a ‘linearly 
independent basis’, or simply a basis.  Typically, there will be many 
different sets, S, that form a basis for a given space. However, it can be 
shown that for any well-behaved vector space, the number of vectors in any 
basis is always the same and this number is defined to be the dimension of 
the space.  If all the vectors in the basis are also orthonormal (i.e. if 

ijj
T
i δ=⋅vv ) then we have an orthonormal basis for the space.  It turns out 

that any basis can be made orthonormal, and the algebra will always turn out 
to be simpler if we assume our basis is orthonormal.  So we will usually 
assume it. 
 
As an example, say we have an orthogonal basis, { }iv  and we want to find 
the expansion coefficients ic  for an arbitrary vector, x : 
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If we take the inner product of x  with jv  we find: 
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however, if the basis is orthonormal then iji
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Thus, in an orthonormal basis, we can obtain a simple expression for the 
expansion of an arbitrary vector: xv T

jjc = . 
 
The choice of a basis for the vector space is completely arbitrary; clearly the 
properties of the vector x  cannot depend on the basis we choose to represent 
it.  This fundamental realization leads to two important points.  The first is 
that if we multiply any vector by the matrix ∑=

j

T
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vector back again: 
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The matrix that always gives the same vector back after multiplication is the 
unit matrix.  So we must have that  
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and we say that a basis forms a “resolution of unity” or a “resolution of the 
identity”. 
 
The second point is that given two different bases ({ }iv  and { }iu  ) , we 
would like to be able to perform a change of basis.  That is, given the 
expansion coefficients of x  in one basis, we want to be able to directly 
obtain the expansion coefficients in another basis.  The key object in this is 
the transformation matrix: 
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This matrix is orthogonal: 
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and it converts the expansion coefficients from the { }iv  basis to the { }iu  
basis: 
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Now, the expansion coefficients in the { }iu  basis are defined by: 
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and so we can quickly read of from the revious equation the equality: 
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Or, in vector form: 
Tcb = . 

So we see that orthogonal matrices allow us to transform from one basis to 
another. 
 

 { }iv  orthonormal 



Another important property of a matrix is that it has eigenvalues and 
eigenvectors.  These special vectors satisfy: 

iii m xMx =  
The numbers im  and the vectors ix  are the eigenvectors of the matrix.  
Actually, the ix  are the right eigenvectors of the system.  A matrix also has 
left eigenvectors: 

iii m yMy =  
and in general these two sets of vectors can be different.  However, in the 
very important case that M  is symmetric, the left and right vectors are the 
same.  There are two more important features of symmetric matrices in this 
regard: 1) their eigenvalues are always real and 2) their eigenvectors can be 
chosen to form an orthonormal basis.  These are very nice properties.  The 
only ambiguity is in the case of degenerate eigenvalues; in this case some of 
the degenerate eigenvectors may not be orthogonal to one another, but one 
can always choose an appropriate linear combination of the degenerate 
eigenvectors to make them orthonormal.  Note that a linear combination of 
two degenerate eigenvectors is, again an eigenvector.  To see this, assume 1x  
and 2x have the same eigenvalue (m).  Then: 
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A symmetric matrix can be diagonalized in terms of its eigenvalues and 
eigenvectors.  Define the orthogonal matrix that has the eigenvectors as its 
columns: 
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and a diagonal matrix D  that has the eigenvalues on the diagonal and zeros 
elsewhere.  Then  

TXDXM=  
To see this, we merely insert unity on both sides of M : 
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which is just the right hand side of the equation above.   
 

xj is an eigenvector 

Eigenvectors are Orthonormal 



Finally, we will also be interested in a function of a matrix.  This is defined 
formally by the power series.  For example: 
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For a symmetric matrix, this can be greatly simplified by going to the 
diagonal representation: 
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where we have made repeated use of the fact that the eigenvectors are 
orthonormal, so 1XX =T .  The power of this last expression is that it allows 
us to re-phrase the evaluation of the exponential of an arbitary matrix in 
terms of the exponential of a diagonal matrix.  The exponential of a diagonal 
matrix is easy (one just exponentiates the diagonal elements).  The same 
transformation works for any function: ( ) ( ) Tff XDXM = . 
 
First, I want to mention several websites that might be a good resource to 
help you assimilate this information; they have the benefit of offering a 
different take on the material (which is always helpful when learning 
something new) and also some excercises that will help you get a working 
knowledge of what is going on. 

 
http://numericalmethods.eng.usf.edu/matrixalgebrabook/downloadma/index.html 
This is a pretty good online resource for someone who either does not 
remember their Linear Algebra course or never took one.  It goes through 
things step-by step and covers the basic things we are interested in.  
However, it is written with underclassmen in mind, so you are going to be 
light years ahead of where the author expects you to be in other areas.  As a 
result, some of the introductory stuff is a little condescending. Chapters 1, 2, 
3 and 10 are the relevant parts. 
 
http://www.ling.upenn.edu/courses/Spring_2003/ling525/linear_algebra_review.html 
This is an exceedingly brief review of linear algebra for people who have 
had a course before but need to brush up on the lingo.  At the beginning, this 
site does a good job of going step-by-step, but later it starts to make some 
big leaps.  The positive point is it is loosely tied to using MATLAB for 
illustrations, which may prove useful. You can skip all the info about SVD. 
 
http://courses.cs.tamu.edu/rgutier/cs790_w02/l3.pdf 

1 1 1 



This site gives a short summary of the definitions of unitary matrices, 
normal matrices, linear independence, etc.  Might be a useful reference once 
you’ve got things down. 
 
http://matrixanalysis.com/DownloadChapters.html 
This site is more advanced than the others, but bridges the gap between basic 
linear algebra and the types of manipulations you might see in practice.  If 
you get even the majority of this stuff, you will be fine.  Sections 3.1-3.6, 
4.1-4.4, 4.7-4.8, 5.1-5.7, 7.1-7.3 and 7.5-7.6 are relevant. 
 
 


