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These brief notes are intended to refresh your memory on some basic concepts and tools pertinent to the
upcoming lectures. Our presentations will make use of many of these results; given the short time available,
we do not plan to discuss them on their own (though you should feel free to ask questions, and to point out
inevitable typos).

Calculations labeled as exercises draw attention to manipulations you should be able to carry out, in
most cases fairly readily. They should serve both as useful practice and as a guide to areas you might want
to brush up on before we descend into the mines of theory next week.

1 Vector calculus

In three dimensions, the position of an object is specified by three coordinates, i.e., by a vector

r = x x̂+ y ŷ + z ẑ

Here, hats denote unit vectors in three orthogonal directions, and the scalar quantities x, y, and z indicate
the corresponding components of r. The length, or magnitude, of this vector is denoted |r| or when we are
feeling lazy just r.

Scalar products, denoted by the symbol “·”, should already be very familiar to you. For two generic
vectors A and B,

A ·B = AxBx +AyBy +AzBz,

where Ax denotes the component of A along x̂, etc. Note that, as the name suggests, the result of this
operation is a scalar quantity, i.e., just a number (not a vector or tensor).

There are other ways to multiply vectors. The “dyadic product” D = AB is a tensor quantity. For the
things we will do to them, tensors are not scary beasts. In simple terms, a vector is a list of scalars; a tensor
is just a list of vectors, which might be naturally written in matrix form. Components of D are therefore
specified by two indices (just like those of a simple matrix), e.g., Dxz = AxBz.

A function f(r) of position r can vary in each of the three directions. There are thus many ways in which
it can be differentiated (i.e., different partial derivatives). A compact way to describe the variation of f(r)
in space is through its gradient

∇f(r) =

(

∂f

∂x

)

y,z

x̂+

(

∂f

∂y

)

x,z

ŷ +

(

∂f

∂z

)

x,y

ẑ.

Note that ∇f is a vector quantity, whose components specify the partial derivatives of f along the corre-
sponding directions. You should be able to convince yourself that the net direction of ∇f is the direction in
which f(r) increases most rapidly. You should also be able to show that the rate of change of f along an

arbitrary direction Â is Â · ∇f . Finally, you should be able to make sense of quantities like ∇ · ∇f ≡ ∇2f
(the Laplacian) and ∇∇f (a tensor – as practice you could work out its components).
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2 Fourier transforms

A function f(t) can be represented as a weighted sum of sines and cosines, provided it satisfies some modest
conditions (which will not be belabored here). Using complex exponentials (recall that eia = cos a+ i sina),

f(t) = (2π)−1

∫

∞

−∞

dω f̂(ω)e−iωt

The integral here sums over different frequencies ω of oscillation, and f̂(ω) indicates how strongly each
frequency contributes to the signal f(t). Orthogonality of oscillations at different frequencies allows us to

obtain f̂(ω) through a very similar expression:

f̂(ω) =

∫

∞

−∞

dt f(t)eiωt

For later use, let’s denote this linear operation on f(t) as F [f(t)] = f̂(ω), the Fourier transform. We

sometimes refer to f̂(ω) as a representation of f(t) “in reciprocal space”. Note that the relationship between

f(t) and f̂(ω) is one-to-one, i.e., f(t) has a unique representation in reciprocal space and f̂(ω) determines a
unique function of t.

Apology: We have already used hats for two different purposes, to denote unit vectors and to denote Fourier
transforms. Context should make it clear which is meant in a given situation.

This way of representing a function brings many advantages. One is that differentiation, df/dt, becomes
an algebraic operation in reciprocal space. To see this, just differentiate the Fourier representation

df

dt
= (2π)−1

∫

∞

−∞

dω f̂(ω)e−iωt(−iω)

The uniqueness of Fourier transforms then tells us that F [df/dt] = −iωf̂(ω). This result of course implies

that F [d2f/dt2] = (−iω)2f̂(ω) and so on.
The variable t is suggestive of time as an independent variable, but we will also frequently transform

functions of position r. In more than one dimension, r is a vector, requiring that we generalize the above
results just a little:

f(r) = (2π)−3

∫

dk f̂(k)e−ik·r

and

f̂(k) =

∫

dr f(r)eik·r

Note that reciprocal space is also of more than one dimension. The “wavevector” k thus indicates not just a
wavelength (λ = 2π/|k|) but also the direction k̂ along which the corresponding Fourier component oscillates.

As described in the previous section, there are many different ways to differentiate a function of a vector.
As examples (that we will use), you should be able to show straightforwardly that

F [∇f(r)] = −ikf̂(k),

F [∇2f(r)] = −k2f̂(k),

and
F [∇∇f(r)] = −kkf̂(k).
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3 Dirac’s delta function

It is often convenient to have at one’s disposal a function that is completely localized, i.e., one that vanishes
except at a single point. Unfortunately, we often want that function also to have finite integrated strength,
requiring that it be singular precisely at the point of interest. This singularity causes plenty of headaches,
but it is worth the trouble.

The function in question is the Dirac delta function δ(x), defined by the two properties:

δ(x) = 0 for x 6= 0, and

∫

∞

−∞

dx δ(x) = 1.

You should be able to convince yourself that δ(x) must diverge at x = 0 in order for the second equation to
hold.

If you ever find yourself befuddled by operations involving delta functions, just replace them (in your
mind, usually) by a function of finite width σ and unit integrated strength (e.g., a Gaussian distribution).
Perform the operation in question with this nonsingular function, and then take the limit σ → 0.

Integrals involving delta functions are usually very easy. For example, so long as f(x) is nonsingular,

∫

∞

−∞

dx δ(x− x0)f(x) = f(x0).

You should be able to show that the Fourier transform of a delta function is very simple,

F [δ(t− t0)] = eiωt0 .

The symmetry and uniqueness of the Fourier transform then imply the useful identity

∫

∞

−∞

dω eiωt = 2πδ(t)

If we wish to localize a function of the vector r in all three directions, we’ll need the generalization

δ(r) ≡ δ(x)δ(y)δ(z)

Exercise: Show that

∇2 1

r
= −4πδ(r)

Demonstrating that ∇2r−1 = 0 for r 6= 0 should be straightforward. Calculating its integral requires a little
more finesse; the divergence theorem provides a short route.

Exercise: Show that

F
[

1

r

]

=
4π

k2

(The result of the first exercise should come in handy.)

4 Statistics

Everyday life provides us with (sometimes misleading) intuition for randomness and probability. Most of
us accept that we cannot anticipate the outcome of a single coin toss. But we expect that if we flip the
same coin many, many times, the number of heads results per flip tends towards a consistent value (1/2 for
an unbiased coin), with the typical deviation growing ever smaller as more flips are performed. It is this
limiting frequency of an outcome that we call probability.
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4.1 Probability distributions and averages

You should already be very familiar with basic properties of probability distributions, which characterize the
frequencies of various outcomes for a particular measurement. As examples,

• A distribution P (A) is properly normalized if summing over all possible outcomes A yields unity,

∑

A

P (A) = 1.

• The average, or expectation value, of a function of A is obtained by summing over appropriately
weighted outcomes. We denote such an average with angled brackets:

〈f(A)〉 =
∑

A

P (A)f(A).

In particular, the average of A itself (f(A) = A) is 〈A〉 = P (A1)A1 + P (A2)A2 + . . .. (This expression
only makes sense if the possible outcomes of A are numeric, which is assumed throughout these notes.)

• The probability of observing any one of a collection of outcomes {A1, A2, . . . , An} is given by the sum
of all individual probabilities:

prob(A1 or A2 or . . . or An) = P (A1) + P (A2) + . . .+ P (An)

4.2 Correlations

A pair of measurements (say, of two properties A and B) may be correlated. This relationship is detailed
by a joint probability P (A,B) of observing a particular value of A and a particular value of B. If the two
measurements are uncorrelated (i.e., the outcome A has no influence on the statistics of outcome B), then
this joint distribution factorizes, P (A,B) = P (A)P (B). The nature of such correlations can be quantified
in several ways. A common approach is to compute the covariance, 〈δA δB〉, where δA = A− 〈A〉. (We will
use this notation, in which δ indicates deviation of a random variable about its average, extensively). You
should be able to show that this quantity vanishes, 〈δA δB〉 = 0, if A and B are uncorrelated.

Conditional probability, detailing the statistics of one measurement A given that a particular outcome of
B has been observed, provides another measure of correlation. We will denote this quantity as P (A|B). It
can be simply related to the joint and singlet probabilities:

P (A|B) =
P (A,B)

P (B)
.

Similarly,

P (B|A) = P (A,B)

P (A)
.

If you have not worked with conditional probabilities before, these basic relationships deserve some rumina-
tion.

4.3 Moments and cumulants

The moments of a probability distribution P (A) give information about its shape. The first moment, 〈A〉,
indicates where P (A) is centered. The second moment 〈A2〉 reflects the breadth of P (A), but in a slightly
indirect way: Note that if P (A) is shifted to larger values of A, so that 〈A〉 increases, 〈A2〉 will also increase
even if the distribution’s width is unchanged. The same is true for higher moments (〈A3〉, 〈A4〉, etc.) For
this reason we often consider the cumulants of P (A) instead.

The first cumulant, C1 = 〈A〉, is the same as the first moment. The second cumulant, C2 = 〈(δA)2〉 =
〈A2〉−〈A〉2 (a.k.a. variance), directly indicates the width of P (A); it is insensitive to shifting the distribution
to the right or left. Similarly, the third cumulant C3 = 〈(δA)3〉 directly characterizes how strongly the
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distribution is skewed to one side or the other. Higher order cumulants have slightly more complicated
forms, e.g., C4 = 〈(δA)4〉 − 3〈(δA)2〉2. They can be defined through a “cumulant generating function”,

Z(λ) = 〈eλA〉.

Specifically,

Cn =
dn lnZ

dλn

∣

∣

∣

∣

λ=0

.

It is good practice to confirm that the first four cumulants described above are consistent with this definition.

4.4 Continuous variables

Up to this point, we have implicitly been considering a random variable A with a discrete set of possible
values. Many of the fluctuating quantities we will discuss are instead continuous degrees of freedom, e.g., a
particle’s position, or the net dipole per molecule in a microscopic region in liquid water. Let us denote a
generic continuous random variable as x, and its probability distribution as p(x).

Most of the results described above generalize simply to this continuous case, replacing sums over discrete
outcomes by integrals over x. The expectation value of a function f(x), for instance, reads

〈f(x)〉 =
∫

dx p(x)f(x).

One substantive difference concerns the meaning of p(x). In the discrete case, it is natural to ask a question
like, “What is the probability that a coin lands heads up?” Its analog here, “What is the probability that x
takes on a value x0?”, is not a well posed question. If p(x) is not singular, then the probability of observing
any specific value of x is zero.

By p(x), we actually mean something awkward like: “The probability of observing a value of x in the
infinitesimal interval between x0 and x0 + dx is p(x0)dx.” In simpler terms, p(x) is a probability density,
i.e., a probability per unit x. Finite probabilities are obtained by integrating p(x) over finite intervals.

I will nonetheless reserve the right to ask questions like, “What is the probability of observing a separation
r between two molecules?”, with the longer, awkward meaning implicit in the fact that r is continuous.
(Incidentally, the question “What is the free energy of binding between two molecules?” is ill-posed for the
very same reason. That is why binding equilibrium constants have units, just as p(x) has units of 1/x.)

4.5 Gaussian distributions

The form of p(x) most commonly encountered in physical chemistry is undoubtedly the Gaussian distribution,
a.k.a., the bell-shaped curve:

pG(x) =
1√
2πσ2

e−(x−x0)
2/2σ2

,

where x0 and σ are parameters defining the distribution’s center (C1 = 〈x〉 = x0) and breadth (C2 = 〈δx2〉 =
σ2).

The reason for the ubiquitous appearance of Gaussian distributions is several-fold. Firstly, its mathe-
matical tractability is nearly irresistible. For example, the cumulant generating function can be computed
exactly:

〈eλx〉 = eλx0eλ
2σ2/2

Exercise: Show that this is true.

Exercise: Using this result, show that the cumulants of pG(x) all vanish except for the first two, i.e., Cn = 0
for n > 2.

The central limit theorem provides a more meaningful reason to become proficient with Gaussian distri-
butions. This theorem concerns a quantity X which is a sum of N independent (i.e., uncorrelated) random
variables:

X = x1 + x2 + x3 + . . .+ xN
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In the limit N → ∞ the distribution of X tends towards a Gaussian form, with

〈δX2〉 =
N
∑

i=1

〈δx2
i 〉.

This result holds regardless of how the xi variables are distributed (with some modest restrictions on p(xi)
that will not be belabored here). Whenever an observable has contributions from many independent sources,
we should expect its statistics to be Gaussian to a first approximation.

5 Electrostatics

Forces between charged particles are centrally important to chemistry, appearing prominently in the elec-
tronic Schrödinger equation, in the theory of polar liquids and their solutions, in the determination of
spectroscopic response functions, etc. The strength and direction of the fundamental Coulomb force should
be very familiar to you. The force F1 on an ion with charge q1 at position r1, due to another charge q2 at
position r2, acts along the direction of separation r̂12 = (r1 − r2)/|r1 − r2|,

F1 = kC
q1q2
r212

r̂12,

with a strength that decays as the inverse square of the distance between them. There is much more to be
said about electrostatics, but it all derives from this basic law.

A word about units: The proportionality constant kC in Coulomb’s law above has been left intentionally
vague. Its value depends on how one bundles various fundamental constants with the charges and distances
involved. In these notes, I will take the charges q to be given relative to

√
4πǫ0, in which case kC = 1.

Integrating the expression for F1 above, we can obtain the potential energy u(r) associated with a pair of
ions separated by a distance r:

u(r) =
q1q2
r

.

5.1 Electric potentials and fields

A large collection of charged species can create very complicated electrostatic environments. Rather than
detailing where each ion resides, we could characterize such an environment through the consequences of
introducing a “test charge”.

Imagine inserting a point ion, with charge q, at position r while holding all of the actual charges fixed.
The energy change resulting from this insertion, per unit charge, defines the electric potential φ(r). Since
Coulomb forces are pairwise additive, we can write the potential explicitly in terms of the positions rj and
charges qj of the actual particles (indexed by j):

φ(r) =
∑

j

qj
|r− rj |

.

This potential can be written alternatively in terms of the charge density field ρ(r) ≡ ∑

j qjδ(r− rj),

φ(r) =

∫

dr′
ρ(r′)

|r− r′| .

(Just plug in the definition of ρ and integrate to confirm.) Using the result of exercises above, you can now
derive Poisson’s equation,

∇2φ(r) = −4πρ(r).

If you have followed this calculation, you should recognize that Poisson’s equation is just a fancy differential
rewriting of Coulomb’s law. It neatly hides the detailed specification of our collection of charges, but they
are still lurking in ρ(r).
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localized charge distribution

Figure 1: A charge distribution extending over a scale ℓ, whose effects are observed at a distant point r.

The electric field E generated by a collection of charges is similarly defined. Specifically, E(r) is the force,
per unit charge, experienced by a point test ion inserted at r. From the fundamental connection between
energy and force, we know that the spatial variation of E and φ contain the same information,

E(r) = −∇φ(r)

5.2 Multipole expansion

Much as a probability distribution can be described in terms of its moments (or cumulants), a distribution of
charges ρ(r) can be equivalently described by a set of “multipole moments”. Such a description is particularly
useful when probing the influence of ρ(r) from a large distance away.

Imagine that a charge distribution is localized to a volume of scale ℓ near the origin. (See Fig. 1.) For
example, we might have in mind a molecule of size ℓ (conceived as a distribution of nuclear and electronic
charge) or a handful of nearby molecules within a distance ℓ of each other.

Let us compute the electric potential φ generated by ρ at a distant point r, with r ≫ ℓ. We showed
above that

φ(r) =

∫

d∆r
ρ(∆r)

|r−∆r| ,

where we have renamed the integration variable to emphasize that ρ(∆r) is only nonzero for points ∆r that
are (comparably) very close to the origin. Since ∆r is much smaller than r, it is tempting to introduce the
Taylor expansion about ∆r = 0,

1

|r−∆r| =
1

r
−∆r · ∇1

r
+

1

2
(∆r · ∇)2

1

r
+ . . .

Combining these two expressions, we can write φ(r) as

φ(r) =
Q

r
−m · ∇1

r
+ . . . ,

where Q =
∫

d∆r ρ(∆r) is the net charge of ρ, and m =
∫

d∆r ρ(∆r)∆r is its dipole, etc. This is a lovely
little expression. For sufficiently large r, the series is strongly dominated by the lowest order terms. From a
distance, the most easily resolved aspect of a localized charge distribution is thus its net charge Q. If you
squint a little more closely, you might notice that it also bears a net dipole m. Looking in still greater detail,
you could detect higher order multipoles, but they are generally important only if lower order contributions
vanish (e.g., if Q = 0 and m = 0, we should probably pay attention to the quadrupole). This caricature of ρ
is much less useful if we view the charge distribution from up close, in which case the series might converge
very slowly.

Exercise: Work out the next couple of terms in this multipole expansion of φ, which involve the quadrupole
and octupole moments.

From the expansion, we can also read off the potential generated by a point dipole at position r0 as
φdipole(r) = −m · ∇|r− r0|−1. The corresponding electric field is Edipole(r) = −m · ∇∇|r− r0|−1.
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Let’s ask a slightly different question about our localized charge distribution. Imagine that we subject
it to an external potential φext generated by some set of distant charges. What is the resulting energy U of
interaction between ρ and φext?

From the definition of electric potential, we can begin with

U =
∑

j

qjφext(rj) =

∫

d∆r ρ(∆r)φext(∆r).

Since φext(r) should not vary much over the scale ℓ (why?), it is natural here to Taylor expand the external
potential,

φext(∆r) = φext(0) + ∆r · ∇φext(0) + . . .

Inserting this expansion, we obtain

U = Qφext(0)−m · Eext(0) + . . .

(You should be able to quickly confirm this result.) We can again read off an important property of point
dipoles, namely that they like to align with external electric fields.

5.3 Dipole-dipole interactions

Interactions between pairs of dipoles will play an important role in developing a theory for polar liquids. We
now have the ingredients to quickly write down the energy of this interaction.

In particular, we have shown that a dipole m1 at position r1 generates an electric field

E(r) = m1 · ∇∇ 1

|r − r1|

at position r. We have also shown that a dipole m2 at position r2 interacts with an external field E(r) with
energy u = −m2 · E . Combining these results, we have

udip−dip = −m1 · ∇2∇2
1

|r2 − r1|
·m2 = m1 · ∇1∇2

1

|r2 − r1|
·m2,

where∇1 and∇2 indicate differentiation with respect to r1 and r2, respectively. Defining a dipole interaction
tensor

T(r, r′) ≡ ∇∇′
1

|r− r′| ,

we can write the interaction energy more compactly as udip−dip = m1 ·T(r1, r2) ·m2.

Exercise: Show that this definition of T(r1, r2) is consistent with the somewhat more common expression

T(r1, r2) =
1

r312
(I− 3 r̂12 r̂12) ,

where I is the identity tensor.
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