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Transition State Theory and Beyond

Transition
State




Collective reaction coordinate for proton transfer.

Solvent Coordinate
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-.004{ — Eacceptor
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It is generally accepted that the anomalous
diffusion of the aqueous hydroxide ion
results from its ability to accept a proton
from a neighboring water molecule; yet,
many guestions exist concerning the
mechanism for this process. What is the
solvation structure of the hydroxide ion? In
what way do water hydrogen bond dynamics
influence the transfer of a proton to the ion?

Roberts S T et al. PNAS 2009:106:15154-
15159

©2009 by National Academy of Sciences



Conical Intersections

AR
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A recently proposed model of the
) . . . e
\\\\:}\\:\;{\;\%‘%‘\ - photo.mdt.xced c:s-tra.n5|somer|zat.|on
R 5% of retinal in rhodopsin, representing
L= N
~.~.§§‘§ TR the first step in vision. Shown are two-
%‘\‘?:\\‘&"‘ ﬁ‘&\{\ 5 =% ) dimensional potential-energy surfaces
IR TR . :
%‘\’?@‘&\% X , S \}\‘&%\@ of the ground and excited electronic
w
via vertical excitation by a pump laser
pulse, which prepares a vibrational

N
R

D )
W \
states. The photoreaction is initiated

)(C wave packet on the excited electronic
/ / CLS / / state. The wave packet is seen to
0 o - D bifurcate at a conical intersection of

the adiabatic surfaces, whereby

the photoproduct is formed with high efficiency and within only 200 fs such as the making and
breaking of chemical bonds in real time, that is, on a femtosecond time scale.

Femtosecond time-resolved spectroscopy of the dynamics at conical intersections, G. Stock
and W. Domcke, in: Conical Intersections, eds: W. Domcke, D. R. Yarkony, and H. Koppel, (World
Scientific, Singapore, 2003)



Intramolecular Dynamics Background
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Think-Pair-Share

How fast (AE At > 7) would your laser pulse
need to be to get electronic dynamics?

A. 102%s
B. 10185
C. 101>
D. 101?s
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Dynamics

One needs to solve

directly or solve HWy(z) = EnWn(x) and calculate
w(iﬁ, t) — Z C-n,w.n (gz:)e_iEnf?/ﬁ
T

Here we review a few select tools of the trade.



Jacobi Coordinates

JOURNAL OF CHEMICAL PHYSICS

Coordinates

Acetylene Example

Internal Coordinates

P

Normal Coordinates

|

VOLUME 112, NUMBER 3

15 TJANUARY 2000

Rovibrational Hamiltonians for general polyatomic molecules in spherical
polar parametrization. I. Orthogonal representations

Mirjana Mladenovic

Institut fiir Physikalische Chemie, Universitdat Gottingen, Tammannstr. 6, D-37077 Gottingen, Germany




Think-Pair-Share

Which coordinate system is well suited for

describing the acetylene/vinylidene
isomerization?

A. Jacobi
B. Normal
C. Internal

D. None of the above



A matrix representation of your Hamiltonian

A useful way to represent H this is to divide it into 2 parts
H=H%+V, where V is hopefully small and H® has known solutions

H'|n)=E,|n)

that enable one to define a basis set. One must then evaluate

<m‘H‘n> = B0, +<m|\/\n>

This integration is over multiple degrees of freedom. If Vis a
polynomial, then the integration can be broken down into a
sum of separable terms. Otherwise integration is painful.
Think back to Gaussian based electronic structure calculations.



Gaussian Quadrature (see Tannor page 286)

Consider approximating the integral of a function f(x) by a finite

sum.
I\)T

[ dr w() ) & Y Wit (e,

1=1
where w(x) is a positive weight function and the N values of
{W;} are the weights to be given to the N function values f(x;).

In Gaussian Quadrature the z; and W, are chosen to give exact
results if f(x) is a polynomial of degree 2N — 1 or less.



Discrete Variable Representation (DVR)

Consider the example of the sinc DVR

Slﬂ[(l’ — Iﬂ)?{_/é]
[(z — xp)7/V0]
where =, = g + nd. The key feature of the DVR is

X'n-(mj) =0 lzzénj

xn(z) =



Discrete Variable Representation (DVR)

Consider the example of the sinc DVR
sin[(zx — xp)7/d]

[(z — )7 /0]
where x,, = g + nd. The key feature of the DVR is

xn(z) =

X'n-(irj) — 5_1X25nj
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Discrete Variable Representation (DVR)

The potential matrix elements are evaluated implicitly by quadra-
ture

/ dz xn(2)*V (2)xm(x) = Y wixn(@;) "V (z;)xm(z;)
j

=V (ilf-yn. ) 5']’?1'1’1 .

Q Potential matrix elements are diagonal. Q

For Gauss-Hermite DVR one diagonalizes the
position matrix in a harmonic oscillator basis set.

Set up the position matrix x
Diagonalize x to obtain X = U'xU

N
Xi = Zuji‘//j
i=1




The Kinetic Energy Matrix Elements are easy to evaluate.

Set up the position matrix kinetic energy matrix t
Diagonalize x to obtain X = UxU
Transform T to obtain T = U%tU




The Kinetic Energy Matrix Elements are easy to evaluate.

A novel discrete variable representation for quantum mechanical reactive
scattering via the S-matrix Kohn method
Daniel T. Colbert and William H. Miller J. Chem. Phys. 96 (3), 1 February 1992

1. (— 0,0 ) interval

In this case, a— — o0, b— w0, 50 a finite grid spacing
Ax = (b — a)/N requires that N— o also. With {x,} de-
fined as in Eq. (A2), one also has i 4- ' — w0, but i — /' is
finite. Equation (A6) thus becomes

/3, =1

(—1)—7 2 Cou s (AT
,

(i—1i)? -

and the grid is now specified more conveniently as x; = /Ax,
| = 0: I 11 o 2:"' .

—

ﬁz
T amAx?
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Think-Pair-Share

The biggest drawback of the DVR representation
is that

A. The variational principle no longer holds.

B. While the potential is sparse, KE is not.

C. The matrix elements are difficult to calculate.
D. Basis sets are large.



Adiabatic approximation and nonadiabatic corrections in the discrete
variable representation: Highly excited vibrational states of triatomic
molecules

J. C. Lightand Z. Bagic®
The Department of Chemistry and the James Franck Institute, The University of Chicago, Chicago,

Illinois 60637
(Received 2 June 1987; accepted 26 June 1987)

An adiabatic approximation for the calculation of excited vibrational (/= 0) levels of
triatomic molecules is developed using the discrete variable representation (DVR). The DVR

HCN isomerization reaction

@ @



Adiabaticity and the DVR

Consider a 2-D Hamiltonian with a fast » and a slow R DOF.

H=Tp~+T +V(R,r).

In Born-Oppenheimer we solve fast »r DOF at each value of R as

(17 + V (R, 7)Yy (r; R) = ER(R)y(r; R)



Adiabaticity and the DVR

Consider a 2-D Hamiltonian with a fast » and a slow R DOF.
H=Tr+1T,+V(R,r).
In Born-Oppenheimer we solve fast »r DOF at each value of R as
(17 4+ V(R. m)]¢(r; R) = ER(R)Y(r; R)
In DVR our basis is
Yl (r)xm(R),
where
[T + V (R, ?)]?ﬁkm(?") — Ekm,’ffﬁ’k.m(?’)-

This leads to the following sparse matrix representation

(km-? Tanlk;nh Tnf) — Ekmékk"é‘?n.m’ + <7T1'|TR|TH'I> <k?71|k;n’>'

/

PROVE THIS Overlap Integral
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Plot of transitional modes as a function of R.
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Think-Pair-Share

A simple HF electronic structure code might be
10,000 lines. A simple MD code might be 1000
lines of code. A simple DVR code for coupling 2
electronic states and 1 vibrational DOF might be

A. 10,000 lines.
B. 1,000 lines.
C. 100 lines.
D. 10 lines.



Home Work Calculation
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delx = (xmax-xmin)/dfloat(npoints-1) !grid spacing

set up the kinetic energy operator
con = 0.5d0/delx**2
t(0) = con*pi**2/3.d0
sone =-1.d0 i’
doi=1,npoints
t(i) = con*sone*2.d0/dfloat(i)**2
sone = -sone
enddo
write(*,*)t

doi=1,npoints
doip=1,i

ﬁz
 2mAx?

(—1) "

h(i,ip) = t(iabs(i-ip)) Dia
h(ip,i) = h(i,ip)

nat 1

h(i+npoints,ip+npoints) = h(i,ip)
h(ip+npoints,i+npoints) = h(ip,i)
enddo
enddo

Diabat 2




| add on the potential contribution
XX = Xmin-delx
doi=1,npoints
XX = xX + delx
vll = 0.5d0*(xx+xe)**2
v22 = 0.5d0*(xx-xe)**2

Diagonal-Diabat Potentials

v12 = v120*dexp(-(xx/alp)**2) | Off-Diagonal Diabat Potentials

h(i,i) =v11 + h(i,i)
h(i+npoints,i+npoints) = v22 + h(i+npoints,i+npoints)
h(i+npoints,i) =vl12

vadl = (v11+v22)/2.d0-0.5d0*dsqrt((v11-v22)**2+4.d0*v12**2)
vadu = (v11+v22)/2.d0-0.5d0*dsqrt((v11-v22)**2+4.d0*v12**2)
write(17,'(4f10.5)")xx,v11,vadl,vadu

enddo



The DVR provides a matrix representation of
the Hamiltonian. What next?

One needs to solve

1h

Ov(x.t -
(@ _ gy
Ot

directly or solve HV,(x) = EnV,(x) and calculate

P, t) = 3 enWn(a)eEnt/
n

One goal is to calculate a spectrum or short time dynamics.

() = [dt(p|a))e = > [(g]¥,)| S(E, /h-w)




i

The Lanczos Method

ﬁm—Z Uy -1

ﬁm—l

ﬁm—l

aﬁ! i

Create a tridiagonal matrix.




The Lanczos Method

Start with an initial vector |¢1) = |9).

o Calculate H|v1) = |x)

® Orthogonalize vector |x) — [x) — |¢1) (1 |x)
® Normalize to obtain |¢5) = (x|x)"1/2|x)

We construct matrix elements.
o Calculate a1 = (¢1|H|¢1)
o Calculate 51 = (V1|H [v9p)
® Calculate ap = (| H |1o)

Continue the process.

© Calculate H|is) = |X>

® Orthogonalize |x) — |x) — 21 1) (1ilx)
O Normalize to obtain |¢¥3) = (x|x)~ l/2|X>



Lanczos with DVR’s

The previous equations were written in braket notation as

2)=Hlw)
To implement this in a basis you multiply both sides by (i| to give

(i) =(iHy)
Now insert the identity, | j){ j| =1, to obtain
]

(i) = 2_(i[H]1)(ilv)

j
This is just matrix multiplication. Use sparse matrix methods.



The Lanczos Method

First we construct the tridiagonal matrix

() By

1 az P2
= . .
B2 ot B

Bi_1 Uy

Next we diagonalize it. Note we only retain three vectors at any time.

Since our ‘ff)> is part of the tridiagonal matrix we can calculate the
spectrum in the Krylov space.

“S(E. I h— )

(o) = [dt{g|gt))e" =D |(¢]¥,)




Solutions to TDSE

For H = HO° + V with small coupling solve
o ihc; =) c;Vi;expli(E; — Ep)t/n].
k
For small dispersion use Askar and Cakmak [JCP 68, 2794
(1978).]
o Y(t+ At) ~yY(t— At) — 2iAtHY(t),

where error is O[(At)303)].
To combine with FFT use the split-operator

e_‘{HAf/ h —i T At/ ﬁ.e—-ﬁl:’?&t/ﬁ.

~ €

For high accuracy use polynomial expansion

@ (D,_EHAT/?} ~ Z a--;rl_P;rl(H) .
n



A Fourier Method Solution
for the Time Dependent Schrédinger Equation
as a Tool in Molecular Dynamics

D. KOSLOFF
Department of Geophysics, Tel-Aviv University. Tel-Aviv, Israel 69978
AND
R. KOSLOFF*

Department of Physical Chemistry and
The Fritz Haber Research Center for Molecular Dynamics,
The Hebrew University, Jerusalem, Israel 91904

Received June 15, 1982; revised November 30, 1982

JOURNAL OF COMPUTATIONAL PHYSICS 52, 35-53 (1983)



KK combined FFT with the split-operator
—iHAt/R ., —iTAt/Ti —iV AL/

as follows: step 1
[6_"’51" AT (e, t)] .

step 2

T [e_ﬂ”‘&t/hw(ar, t)]
step 3
step 5



The split-operator applied to a conical
Intersection

THE JOURNAL OF CHEMICAL PHYSICS 122. 224315 (2005)

Time-dependent quantum wave-packet description
of the 'm0 photochemistry of phenol

Zhenggang Lan® and Wolfgang Domcke

Department of Chemistryv, Technical University of Munich, Garching D-85747, Germany

Valérie Vallet

Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), Centre d’Etudes et de Recherche
Lasers et Applications (CERLA), Université des Sciences et Technologies de Lille,

Villeneuve ddscq Cedex F-59655, France

Andrzej L. Sobolewski
Institute of Physics, Polish Academy of Science, Warsaw PL-02668, Poland

Susanta Mahapatra
School of Chemistry, University of Hvderabad, Hvderabad 500 046, India

(Received 14 January 2005: accepted 21 March 2005: published online 15 June 2005)
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Theoretical Methods for Ultrafast Spectroscopy

Roberto Marquardt*®

Time-resolved spectroscopy in the femtosecond and attosec-
ond time domain is a tool to unravel the dynamics of nuclear
and electronic motion in molecular systems. Theoretical insight
into the underlying physical processes is ideally gained by solv-
ing the time-dependent Schridinger equation. In this work,
methods currently used to solve this equation are reviewed in

ChemPhysChem 2013, 14, 1350- 1361

a compact presentation. These methods involve numerical rep-
resentations of wavefunctions and operators, the calculation of
time evolution operators, the setting up of the Hamiltonian
operators and the types of coordinates to be used hereto. The
advantages and disadvantages of some methods are dis-
cussed.

1350



Ultrafast nonadiabatic photoreactions
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A recently proposed model of the
) . . . e
\\\\:}\\:\;{\;\%‘%‘\ - photo.mdt.xced c:s-tra.n5|somer|zat.|on
R 5% of retinal in rhodopsin, representing
L= N
~.~.§§‘§ TR the first step in vision. Shown are two-
%‘\‘?:\\‘&"‘ ﬁ‘&\{\ 5 =% ) dimensional potential-energy surfaces
IR TR . :
%‘\’?@‘&\% X , S \}\‘&%\@ of the ground and excited electronic
w
via vertical excitation by a pump laser
pulse, which prepares a vibrational

N
R

D )
W \
states. The photoreaction is initiated

)(C wave packet on the excited electronic
/ / CLS / / state. The wave packet is seen to
0 o - D bifurcate at a conical intersection of

the adiabatic surfaces, whereby

the photoproduct is formed with high efficiency and within only 200 fs such as the making and
breaking of chemical bonds in real time, that is, on a femtosecond time scale.

Femtosecond time-resolved spectroscopy of the dynamics at conical intersections, G. Stock
and W. Domcke, in: Conical Intersections, eds: W. Domcke, D. R. Yarkony, and H. Koppel, (World
Scientific, Singapore, 2003)



Background/Basics
for
Conical Intersections



The Diabatic Picture of Electron Transfer, Reaction Barriers, and Molecular
Dynamics, T. Voorhis et al. Annu. Rev. Phys. Chem. 61, 149 (2009).

Energy

@ @

® 9

Y

Na-Cl distance



Avoided Crossing of Two Potential Energy Curves

Adiabatic Potentials

Diabatic Potentials

Vi,(r)—E
VlZ(r)

Vi, (1)
Vo, (r)—E

_o Vjarediabatic surfaces
E are adiabatic surfaces






Hopping probability depends on size of V.
If V,,=0, red and black curves are same.

(M) —E
I\/V12(r)

In higher dimensions this is more complicated.

1u(F8)—E  Vio(I,s)
[\/V12(r13) Vy,(r,s)—E

=0

Vi,(r)
Vo,(r)—E




WavePacket t =0.0000 hbar / Eh step =0 cappuccino (Unix)

qm_propa E, ~12.396308 E, , N =1.0000 11-Jan-2010
va7.2 18:46

V. (R E]

R, [a,]

Ulf Lorenz

ulf.lorenz@kemi.dtu.dk



http://www.kemi.dtu.dk/om/medarbejdere/list_phd.aspx?lg=showcommon&id=44169&type=projects&currentprojects=true
mailto:ulf.lorenz@kemi.dtu.dk

The Challenges of Open Shell Systems

T. A. Barckholtz and T. A. Miller, Int. Rev. Phys. Chem. 17, 435 (1998).

Hoper, Botschwina,and Koppel. Theoretical study of the Jahn-Teller
effect in the X2 E CH,0 JCP 112, 4132 (2000).

John F. Stanton and Mitchio Okumura, On the vibronic level structure in the
NO, radical: Part Ill. Observation of intensity borrowing via ground state
mixing, PCCP, 2009, 11, 4742 — 4744.

A model spin-vibronic Hamiltonian for twofold degenerate electron
systems: A variational ab initio study of XEECHSD'

Aleksandr V. Marenich and James E. Boggs®
Department of Chemistry and Biochemistry, Institute for Theoretical Chemistry, The University of Texas
at Austin, Austin, Texas 78712

(Received 6 August 2004; accepted 5 October 2004; published online 22 December 2004)



Motivation for Studying Methoxy

There is long standing interest in open shell systems due to their relevance to
combustion and atmospheric chemistry.

Given their reactivity, there are inherent experimental difficulties in their
spectroscopic characterization. Therefore, theoretical descriptions of the

spectroscopy and dynamics can contribute to the characterization of these
molecules.







The potential for CHF; bending mode.

X = I COS @
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Form of the potential
A The odd electron can

V(x) be in the p, or the p,
orbital of O. We get 2
degenerate states at
C,, geometry.

>

What can we learn about the shape of this
potential based on symmetry?

Why isn’t the minimum at the origin?



The adiabatic potential must have 3-fold symmetry.

'V WI| =0
all CUH(('J) — W b*1 '-alll(m) _0
b2 sin(o) a?? cos(p) — W |
a'la®? cos? () —b"b*t sin?(¢) - W(a't+a*?) cos(p)+W= =0

W =+a"tp=+ap
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— f11y + fo2(2uy)




WavePacket t=0.0000 hbar /E,  step =0 cappuccino (Unix)

qm_propa E di =12.396308 Eh’ N =1.0000 11-Jan-2010
va.7.2 ack 18:46

4
= o
:‘é

/ -4
- i ) R2 [ao]
JAHN-TELLER POTENTIAL ENERGY
SURFACE (PES) >
4
o
2.
Ulf Lorenz

Department of Chemistry 5
Technical University of Denmark | | I
ulf.lorenz@kemi.dtu.dk -4 o 4
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Spectra Associated w Gaussians

08 | (a)
=
2 04| _
o L [LJLLL__
06 o |
§ 03 | |
. ||.‘ Ill
1 3 7 11



The Berry Phase

i

Symmetry wrt to the y axis tells us the
potential must have the form

axr Yy
V= /
( Yy B )

Symmetry wrt to the 3 fold rotation tells
us the potential must have the form

o=—B=-y

The transformation to the adiabatic
representation is given by W=UTVU

U—( cos(¢/2) sin(c)/?))
—\ —sin(¢/2) cos(¢/2)

v [ ap 0
11__< 0 —@p)



Colors denote phase
of wave function

% Berry’s Phase
A
V(x)

>

o






















Vibrational dynamics around the conical intersection: a study of methoxy
vibrations on the X*E surface

Jayashree Nagesh and Edwin L. Sibert™  phys. Chem. Chem. Phys., 2010, 12, 8250-8259

THE JOURNAL OF CHEMICAL PHYSICS 134, 044101 (2011)

On the construction of quasidiabatic state representations of bound
adiabatic state potential energy surfaces coupled by accidental conical
intersections: Incorporation of higher order terms

Joseph Dillon,"@ David R. Yarkony,'-? and Michael S. Schuurman?-°
! Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
*Steacie Institute for Molecular Sciences, National Research Council, Ottawa KIN 6C1, Canada

044101-5 Higher order terms J. Chem. Phys. 134, 044101 (2011)

10 000
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Energy(cm ')

i-5000

1 1 1 1 A 1
-05
g(a.u_)o.u 0.5

FIG. 2. Plot of energy of 2By, 2A|, 2A,. and 2B, states in the g/ plane.



Some concluding comments.




Nonadiabatic reactive scattering in atom+triatom systems: Nascent
rovibronic distributions in F+H,0—HF+OH

This is due in part to the greatly increased complexity of
polyatomic systems, the subsequent computational cost of
theoretically treating multisurface dynamics, and the growing
importance of conical intersections in such problems.

The notion that a reaction occurs on a single electronic
surface remains the dominant zeroth order paradigm in
chemical physics. However, this situation has been slowly
changing, as nonadiabatic reaction dynamics in benchmark
triatomic systems have recently received considerable
experimental and theoretical attention.

Michael Ziemkiewicz and David J. Nesbitt"

THE JOURNAL OF CHEMICAL PHYSICS 131, 054309 (2009)



Excited-State Charge Transfer at a Conical Intersection: Effects of an Environment

)
NN
Y
e
s >

T

Irene Burghardt** and James T. Hynes*"*

J. Phys. Chem. 4 2006, 110, 11411—-11423




