TSTC Dynamics Lectures
Transition State Theory

July 14-20
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* Objective:

e Calculate reaction rates

» Obtain insight on reaction mechanism

* Eyring, Wigner, Others..

« Existence of Born-Oppenheimer V(x)

+ Classical nuclear motions

« No dynamical recrossings of TST

e Keck,Marcus,Miller, Truhlar, Others...

* Extend to phase space

» Variational Transition State Theory

 Formal reaction rate formulas

e Pechukas, Pollak...

» PODS—2-Dimensional non-recrossing DS

e Full-Dimensional Non-Recrossing Surfaces
» Miller, Hernandez developed good action-angle variables at

the TS using CVPT/Lie PT to construct semiclassical rates

« Jaffé, Uzer, Wiggins, Berry, Others... extended to NHIM’s,

etc

Telbaricie Sehipod en Thsonsicsl Chemivry

TSTC Lecture #3
July 2011
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Transition State Theory and Beyond

Transition
State




Transition State T heory:
A Dynamical Perspective

Transition state theory is the theory for the interpretation of
chemical reaction rates.

See Current Status of Transition-State Theory, J. Phys. Chem.
87 2664 (1983). for an excellent review.

In a series of papers Miller [Acc. Chem. Res. 1993, 26, 174]
made deep connections between TST and dynamics, building on
earlier work of Pechukas and others. He also make connections
with quantum mechanical scattering theory.



A Simple 1D Model for Transition State (Pechukas)

Reactants
Products
T he rate constant for the above 1D model is
= ) (1)
— — 1
(szi)l,f? p ’O p

where p(p) is the probability that a reactant molecule has mo-
mentum between p and p + dp.

If we assume that
p(p) = exp(—p?/2mkT)/(2mmkT)!/? (2)
then we can evaluate the integral to obtain

_ i .
L — kTexp( E+/mET) (3)
) (27r-ka)U2/h




A Simple 1D Model for Transition State (continued)

E= (2mrmkT)™ 152/ dp £t—?‘)([:)( pQ/kaT)

(2mET)1/2

We can make the whole calculation look slightly less juvenile by
introducing an obscure notation and obtain

k= 2rmkT) ™2 [dp L, (. q) expl—H (p.q)/KT),

where v, (p.q), the characteristic function = 1 for a reactive
trajectory and O for a nonreactive trajectory. The quantity
xr(p,q)exp[—H(p,q)/kT] is a phase space density. Its flux through
any dividing surface is constant.

T he equilibrium rate constant is proportional to the classical flux
of this density through the surface in phase space defined by the
equation g = constant.



As technical aside, one sees the below expression
written with and without the ‘r’ subscript on 7.

k = (2rmkT) ™2 [ dp Lo (p. q) expl—H (p.q) /KT,

x.(p,q)=1 for a reactive trajectory, otherwise vy,(p,q)=0.
x(p,q) = xAp,a)+ AP, q).

Transition state theory replaces y,(p,q*) with y.(p,q*) where

x.(p,q)=11f p>0
=0 otherwise



Higher Dimensions

1 dimensional = F - dimensional

m dt S(CI)] F(a,p)

*S(g=0) defines a F-1 dimensional hypersurface.
*h is the heaviside function.




The Flux - F(p,q)

The flux is defined wrt a dividing surface s(q) = 0.

F(a,p) = hls(@)] = ols(@)]vs(p.) 3)
where vs(p,q) = ds(q)/dt is velocity along reaction coordinate.
F C)S : F s Pi
i = 508 = X o

The Characteristic Function - x(p,q)

x(p.q) = 1 if the trajectory, determined by initial conditions at
time t=0, goes from reactant in the infinite past to products in
the infinite future. Otherwise x(p.q) = O.

x(p.q) = lim hls(q)]



Classical Equilibrium Rate Result

QML) = W~F [ ap [ dq e H@DEETF(p q)x(p, ).
QML) = lim [W]~F [ dp [ da e=HPD/EBT5[s(q)]os (b, ) hls(a(t))].

Qr(TIK(T) = lim ¢ ()

Reactants Products

D
— —

s=0 Plot c}’l(t) for t>0.




QM) = W~ [ dp [ dq e H@DEETF(p q)x(p, ).
QML) = lim [W]~F [ ap [ dq e=HPDEBT5s(q)]os(p, ) Rls(a(t)].

Qr (T)k(T) — Ilm C (f) (fg( )/Qr( )

A

TST limit Classical
w

-
t

K(T).e; =limt —07c? (t)/Q, (t)



Transition State T heory

The dynamical TST approximation is
xTsT(P.a) = lim hl[s(q)] = h(vs),
t—0T
where h is the Heaviside fn.

One also assumes an initial equilibrium distribution of reactants
and no products.

In a tour de force of mathematical dexterity, Miller reduced the
thermal rate constant to

KT QN(T)
h Qr(T)

where Qi iIs the partition function on the dividing surface,

(T = (4)

QX (T) = (QWﬁ)—(F—ljfdp"/dq’ e—Hr_1(p",d")/kpT (5)



Reaction rates and Marcus theory (2)
Kramers theory

In Kramers theory (1940) the assumption of equilibrium in the reactant
well is maintained, and attention is focussed on the barrier region.
Using a model for Brownian motion over the barrier, where the reacting
particle experiences friction due to the surrounding solvent molecules,
Kramers was able to derive an expression for the rate constant:

pK = %, TST

¢

where wy is the barrier frequency, m the mass of the reactive particle,
and (¢ the friction constant it experiences in its motion. This result
only holds in the limit of very high friction.

H.A. Kramers (1894-1952)

l

wp The Kramers rate is always lower than the rate
calculated with TST. The reason is that now it

is not sufficient for the particle to reach the top
of the barrier, it has to have sufficient velocity
to go over it, or it will be sent back to the
reactant well.

[
»

Reaction coordinate

Slide from Gert van der Zwan



Kramer’s Turnover

The turnover, from an energy-diffusion limited regime, where
rates increase with friction, to a spacial-diffusion one, in

which rates do the opposite, was predicted by Kramers in
his 1940.



Think - Pair - Share

What does t'j;i(f)/Qr(T) look like for negative time?

(1) /QAT) (1) /AT ¢f(1)/Qr(T)
A A A
Classical Classical \ Classical
- - -

—_

A) B) C)

QML) = lim [W]~F [ ap [ dq e=HPDEBT5Ts(q) oy (p, )Rls(a(t)]:



Microcanical Rate Constants

The thermal rate constant can be expressed in terms of the
cumulative reactive probability N(E) as

(T) = [27RQ,(T)] 1 /ODG dE e_Eﬂ“BTf\r(E);

where

N(E) = (2frﬁ-)‘(F‘1)./ dp / dq 6[E — H(p, )]F(p,a)x(p,q). (2)

Statistical Factor

It can and will be shown that

Dynamical Factor

N(E) = (27R)~ @1 /'dp" /dq’ h[E — Hp_4]




Classical to Quantum



Classical to Quantum Result

K(T) = [27FQ-(T)] /Om dE e~ E/RBT N (R,

N(E) = (2rR)~ 1) / dp’ / dq’ h[E — Hp_4]

Assume F' DOF is separable. The F —1 DOF correspond to
bound states with energies E,, and we replace N(E) with

N(E) = Z Pryn (E — Eﬂ_f)
n'
to give

K(T) = 2rRQuD Y [ dE e /AT P, (E - E,)

n!



Classical to Quantum Result

E(T) = [20Q(T)] 71 A T dE e E/RET P, (B~ E, )

n'
Letting EFp = E — E,, One obtains

K(T) = [27RQ.(T)]" 1|3 e Fn/ksT

L n/

= 2rnQ(D 7} [QHD)] [ dEpePF/MET Py, (Ep)

[j dEFE_EF MIBTPtun(EF)

kT QT oS AT
BTOUT) ;. =1 / T dEp e EF/FET Py, (B )
h Qr(T) /0
: ;
= H(T)hBTQ (T)
h Qr(T)

We have derived the TST tunneling correction «{T).



Quantum Transition State T heory

If reaction coordinate is separable from the remaining DOF, then
one can:

Q quantize the FF — 1 bound dof to obtain e,.
A calculate N(E) =Y, Piun(E — en)

Q E(T) = ﬁ(T)’I"ESigg where

O .
k(1) = UfBT)_lfo dEpe FF/RET Py (ER)

Q You need info on potential in the region of transition state.



A new tunneling path for reactions such as

H+H,—H,+H? R. A Marcus and Michael E. Coltrin
The Journal of Chemical Physics, Vol. 67, No. 6, 15 September 1977

3.0 -

L FIG. 1. Plot of potential energy contours for the H+H, —H,

+H reaction using the Porter—Karplus surface. Solid line is

- line of steepest ascent (reaction path}. Dotted line is the #-
SIS curve (limit of vibrational amplitudes in the given vibrational
= state, here the zero~-point state), The points P and P’ denote
” s the initial and final tunneling points on the ¢-curve for a par-

’ ticular total energy. The corresponding tuaneling points if

tunneling occurred along the reaction path are @ and @’.

256 Citations



Reaction probability vs intial translational energy
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THE JOURNAL OF CHEMICAL PHYSICS 134, 094302 (2011)

High-level direct-dynamics variational transition state theory calculations
including multidimensional tunneling of the thermal rate constants,
branching ratios, and kinetic isotope effects of the hydrogen abstraction
reactions from methanol by atomic hydrogen

Rubén Meana-Pafieda,! Donald G. Truhlar,? and Antonio Fernandez-Ramos'-@

' Department of Physical Chemistry and Center for Research in Biological Chemistry and Molecular
Materials, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain

*Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S. E.,

Minneapolis, Minnesota 55455-0431, USA
(Received 25 October 2010; accepted 28 January 2011; published online 2 March 2011)

We report a detailed theoretical study of the hydrogen abstraction reaction from methanol by
atomic hydrogen. The study includes the analysis of thermal rate constants, branching ratios, and
kinetic isotope effects. Specifically, we have performed high-level computations at the MC3BB
level together with direct dynamics calculations by canonical variational transition state theory
(CVT) with the microcanonically optimized multidimensional tunneling (pOMT) transmission co-
efficient (CVT/nOMT) to study both the CH3;0H + H — CH»>OH + H; (R1) reaction and the
CH;0OH + H — CH;0 + H; (R2) reaction.



Sophisticated Comparison of Quantum and Classical
Rate Theories

To obtain a quantum TST like expression we replace classical
with quantum expressions

v @) [dp [al-1— trl--]
O F(p.a) = ShIf(a)] = F = HIH,h(/(2))]

9 x(p,a) = Jim Alf(a(e)] = [ de Shif@) = [ dt F(0)

Classical

N(E) = 2xt)~F=D [dp [ da 61 - H(p, @)IF (b, )x(p, )

Quantum

N(E) = (2nF)~1 [:'D dt tr[6(E — H)] FF(t)



Quantum EXxpression Simplified

N(E) = (27TF) /D ~ i tr[5(E — H) FF(1)]

where we will insert Real part of integral

IS even.

F(f) — eiﬁf/ﬁﬁr—‘iﬁf/ﬁ

to obtain

N(E) = (#F) f_ : dt tr[5(E — H) PeiH-E)t/Tp)



Quantum EXxpression Simplified

N(E) = (27TF) /D Tt tr[5(E — H) FE(D)]

where we will insert o function allows us

= - to replace H with E.
F(t) = e Ht/hp—ifit/n

to obtain

N(E) = (#F) f_ 0; dt tr[5(E — H) PeiH-E)t/Tp)



Classical

N(E) = (2rkh)~F 1) [ dp [ dq S8[E — H(p,q)]F(p,a)x(p.q). (2)

_— /

Statistical Factor Dynamical Factor

Quantum
N(E) = 2(xh)? tr[6(E — H) F5(E — H)F).

Where is the dynamical factor?

“In guantum mechanics, dynamics and statistics are
inseparably intertwined; e.g., a wavefunction describes the
dynamical motion of the particles and also their statistics.”



TOPICAL REVIEW

Accurate calculations of reaction rates: predictive theory based on a rigorous quantum
transition state concept

Uwe Manthe®

Molecular Physics
Vol. 109, No. 11, 10 June 2011, 1415-1426

N(E)=Tr[P(E)] P(E)=4&"G(E)'¢GE)E" NE)= 2 pu(B),



Beyond Transition State Theory

Full-dimensional time-dependent treatment for diatom-diatom reactions:
The H,+OH reaction

Dong H. Zhang® and John Z. H. Zhang
Department of Chemistry, New York University, New York, New York 10003

(Received 18 February 1994; accepted 1 April 1994)

Quantum dynamics study of H+NH;— H,+NH, reaction

Xu Qiang Zhang, Qian Cui, and John Z. H. Zhang®
Department of Chemistry, New York University, New York, New York 10003

Ke Li Han

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics,
The Chinese Academy of Science, Dalian 116023, China

(Received 19 March 2007; accepted 8 May 2007; published online 19 June 2007)

The effect of nonadiabatic coupling on the calculation of N(E,J)
for the methane association reaction

Kristy L. Mardis and Edwin L. Sibert [1|?

Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Madison,
Wisconsin 53706

(Received 18 June 1998: accepted 19 August 1998)



Plot of transitional modes as a function of R.
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The microcanonical rate constant

N(E.J)

KE.J)= P yE—
hp™(E.J)

can be written in terms of the cummulative reaction probability.

p— Il p— [l 2
N(E.J) Z Z P, (E.J) Z Z 1S, (E.J)|>. Absorbing Wall
F=Y8(R—Ry)vg+vpd(R—Ry)]. 800 - —
F=> |n"YEn'|. = a0l
n' 5
PEJ)=> (WidnYVEm' |V ). &
n' rff o f
o (T | n'NE(n' |, -.* ® -
P (E.J)=(V gn")F(n'|V ). j -
400 i
1 o ; o [ A i I |
W :—J‘ dteliEtR) (t). 2. 3.35 4.00 4.65
nk HH{E} — 00 wn R (Angstroms)



Comparison of SACM, SACM with tunneling, and exact QM
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